College Algebra Weekly Quiz 9 Name:_____

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (5 points) Graph the function $f(x) = \log_6 x$, and its inverse, then complete the chart below.

- 2. Use your calculator to find
 - (a) (1 point) log 456

(b) (1 point) ln 1000

(c) (2 points) $\log_8 8000$

(a) _____

(b) _____

(c) _____

3. (5 points) Graph the function $f(x) = \log_{1/4} x$, and its inverse, then complete the chart below.

4. (3 points) Solve $\log_2(3x+2) = 5$, and check your solution.

4. _____

5. (3 points) Solve $\log_3(\sqrt{x}-1)=2$, and check your solution.

- 6. (2 points) Use change-of-base formula to evaluate $\log_7 100$ rounded to three decimal places.
- 7. (3 points) Solve: $\log_2(3x+5) = 3$

7. _____

8. ____

6. _____

8. (4 points) Solve: $\log_2(x^2 - 2x) = 3$

9. (4 points) Solve: $\log_8(x^2 + 7x) = 1$

9. _____

10. (3 points) Expand and simplify: $\log_3 81x^2$

11. (4 points) Expand and simplify: $\log_2 \frac{32\sqrt{x}}{y^3}$

12. (3 points) Write as a single log: $3 \log_5 2 + 5 \log_5 x - \frac{1}{5} \log_5 y$

13. (4 points) Write as a single log: $3 \log_2 x - \frac{1}{4} \log_2 y - 2$

13. _____

12. _____

11. _____

14. (3 points) Find the inverse of $f(x) = \log_3(x+5)$.

	15
16. (1 point) Evaluate: 7! + 3!	
17. (2 points) Evaluate: 3! · 5!	16
	17
18. (2 points) Evaluate: $\frac{7!}{3!}$	
9!	18
19. (2 points) Evaluate: $\frac{1}{4! \cdot 5!}$	
	19
20. (2 points) Evaluate: $\frac{12!}{3! \cdot 5! \cdot 4!}$	

22. (3 points) Expand: $(x+y)^4$, make sure to box your final answer.

23. (4 points) Expand: $(x - y)^5$, make sure to box your final answer.

24. (4 points) Find the first four terms of $(x^2 - 2y^3)^9$, make sure to box your final answer.

25. (4 points) Find the 5th term of $\left(x-y^2\right)^{10}$

26. (4 points) Find the 6th term of $\left(x^3 - y^8\right)^{12}$

26. _____

27. (4 points) Find the middle term of $(4x^2 - 5y^6)^{10}$

27. _____
28. (2 points) Find the sum:
$$\sum_{n=1}^{5} n^2$$

28. _____
29. (3 points) Find the sum: $\sum_{n=1}^{4} \frac{1}{n}$

30. (4 points) Find the sum: $\sum_{n=0}^{\infty} \left(\frac{-1}{3}\right)^n$

30.____

31. Consider $2^n > 2n + 1$, (a) (1 point) Show that it works for $n \ge 3$.

(a) _____

(b) (5 points) Use mathematical induction to prove the statement is true for all natural numbers n.